Modern Statistics

Lecture 7 - 3/10/2025

Lecture 7 Convergence of R.V.

Lecturer:Xiangyu Chang

Scribe: Ruishi Wang, Mengyao Wang

Edited by: Zhihong Liu

1 Recall

- $X_n \stackrel{P}{\to} X$, $\lim_{n \to \infty} \mathbb{P}(|X_n X| > \epsilon) = 0$.
- $X_n \stackrel{d}{\to} X$, $\lim_{n \to \infty} F_n(t) = F_X(t)$, for all t for which F_X is continuous.
- $X_n \stackrel{L^2}{\to} X$, $\lim_{n \to \infty} \mathbb{E}[(X_n X)^2] = 0$.

2 Some Proof about Types of Convergence

2.1 Classical Example

$$X_n \sim N(0, \frac{1}{n})$$

To prove:

• (1) $X_n \stackrel{d}{\rightarrow} X$, P(X=0)=1.

Proof:

$$F_n(t) = \mathbb{P}(X_n \le t)$$

$$= \mathbb{P}(\sqrt{n}X_n \le \sqrt{n}t)$$

$$= \Phi(\sqrt{n}t),$$

where $\sqrt{n}X_n \sim N(0,1)$

$$\lim_{n \to \infty} F_n(t) = 1, \quad \text{for } t > 0.$$

$$\lim_{n \to \infty} F_n(t) = 0, \quad \text{for } t < 0.$$

$$\lim_{n\to\infty}F_n(t)=\frac{1}{2},\quad \text{when }t=0.$$

$$F_X(t) = \begin{cases} 1 & \text{if } t \ge 0, \\ 0 & \text{if } t < 0. \end{cases}$$

For
$$t > 0$$
: $\lim_{n \to \infty} F_n(t) = F_X(t) = 1$,

For
$$t < 0$$
: $\lim_{n \to \infty} F_n(t) = F_X(t) = 0$,

At
$$t = 0$$
: $\lim_{n \to \infty} F_n(0) = \frac{1}{2} \neq F_X(0) = 1$ (Point of discontinuity).

$$X_n \stackrel{d}{\to} X$$
.

Supplementary Theorem

Theorem 1 (Markov Inequality). If random variable X > 0, then for all $\epsilon > 0$,

$$\mathbb{P}(X > \epsilon) \le \frac{\mathbb{E}(X)}{\epsilon}.$$

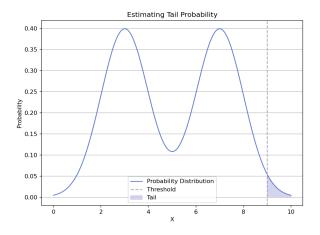


图 1: Markov Inequality Example Figure

Proof:

Let
$$y_1 = \epsilon I(x > \epsilon)$$
 and $y_2 = x(x \ge \epsilon)$.

Since

$$y_1 \leq y_2$$

then

$$\mathbb{E}(y_1) \le \mathbb{E}(y_2),$$

$$\epsilon \mathbb{E}[I(X \ge \epsilon)] \le \mathbb{E}(X),$$

$$\epsilon \mathbb{P}(X \ge \epsilon) \le \mathbb{E}(X),$$

$$\mathbb{P}(X \ge \epsilon) \le \frac{\mathbb{E}(X)}{\epsilon}.$$

Theorem 2 (Chebyshev's Inequality). Given a sequence $\{X_n\}$, $\mathbb{E}(X_n) = \mu$, $Var(X_n) = \sigma^2$.

$$\Rightarrow \mathbb{P}(|X_n - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}.$$

Proof:

$$\mathbb{P}(|X_n - \mu| \ge \epsilon) = \mathbb{P}((X_n - \mu)^2 \ge \epsilon^2)$$

$$\le \frac{\mathbb{E}[(X_n - \mu)^2]}{\epsilon^2}$$

$$= \frac{\sigma^2}{\epsilon^2}.$$

Tips.

(1) Concentration Inequality

(2)

$$\mathbb{P}(\exp(X_n - \mu) \ge \exp(\epsilon)) \le \frac{\mathbb{E}[\exp(X_n - \mu)]}{\exp(\epsilon)}.$$

Supplementary Theorem

• ② $X_n \stackrel{P}{\rightarrow} 0$.

Proof:

$$\mathbb{P}(|X_n - 0| \ge \epsilon) = \mathbb{P}((X_n - 0)^2 \ge \epsilon^2)$$

$$= \mathbb{P}((X_n - \mathbb{E}(X_n))^2 \ge \epsilon^2)$$

$$\le \frac{Var(X_n)}{\epsilon^2} \quad (by \quad Theorem2)$$

$$= \frac{1}{n\epsilon^2} \to 0.$$

2.2 Relationship between types of convergence

Theorem 3. ①

$$X_n \stackrel{L^2}{\to} X \Rightarrow X_n \stackrel{P}{\to} X.$$

2

$$X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{d}{\to} X.$$

3

$$X_n \stackrel{d}{\to} X, \mathbb{P}(X=c) = 1 \Rightarrow X_n \stackrel{P}{\to} X.$$

Summary:

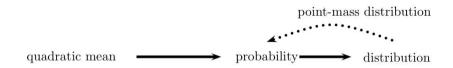


图 2: Relationship between Types of Convergence.

Proof:

(I)

$$\mathbb{P}(|X_n - X| \ge \epsilon) = \mathbb{P}((X_n - X)^2 \ge \epsilon^2)$$

$$\le \frac{\mathbb{E}[(X_n - X)^2]}{\epsilon^2} \stackrel{:: X_n \stackrel{L^2}{\longrightarrow} X}{\longrightarrow} 0.$$

2

$$F_n(x) = \mathbb{P}(X_n \le x)$$

$$= \mathbb{P}(X_n \le x, X > x + \epsilon) + \mathbb{P}(X_n \le x, X \le x + \epsilon)$$

$$\le \mathbb{P}(X_n \le x, X > x + \epsilon) + \mathbb{P}(X \le x + \epsilon)$$

$$\le \mathbb{P}(|X - X_n| \ge \epsilon) + F_X(x + \epsilon).$$

$$\begin{split} F_X(x-\epsilon) &= \mathbb{P}(X \leq x - \epsilon) \\ &= \mathbb{P}(X \leq x - \epsilon, X_n \leq x) + \mathbb{P}(X \leq x - \epsilon, X_n > \ x) \\ &\leq \mathbb{P}(X_n \leq x) + \mathbb{P}(X_n > X + \epsilon) \\ &\leq F_n(x) + \mathbb{P}(|X_n - X| > \epsilon). \end{split}$$

Therefore,

$$F_X(x - \epsilon) - \mathbb{P}(|X_n - X| > \epsilon) \le F_n(x) \le F_X(x + \epsilon) + \mathbb{P}(|X_n - X| \ge \epsilon).$$

As $n \to \infty$, $F_n(x) \to F_X(x)$ at x which is a continuous point of F_X .

3

$$X_n \stackrel{d}{\to} X, \mathbb{P}(X=c) = 1 \Rightarrow X_n \stackrel{P}{\to} X.$$

$$\mathbb{P}(|X_n - c| > \varepsilon) = \mathbb{P}(X_n \ge c + \varepsilon) + \mathbb{P}(X_n \le c - \varepsilon)$$
$$= F_n(c - \varepsilon) + 1 - F_n(c + \varepsilon).$$

As $n \to \infty$,

$$F_X(c-\varepsilon) + 1 - F_X(c+\varepsilon)$$

$$= 0 + 1 - 1$$

$$= 0$$

3 Main Theorems

3.1 Weak Law of Large Numbers (WLLN)

Theorem 4. If X_1, \ldots, X_n are IID with $\mathbb{E}X_i = \mu$, then $\overline{X}_n \xrightarrow{P} \mu$.

Proof:

By Chebyshev's inequality:

$$\mathbb{P}(|\overline{X}_n - \mu| > \epsilon) \le \frac{V(\overline{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0 \quad (n \to \infty).$$

3.2 Central Limit Theorem (CLT)

Theorem 5. Let X_1, \ldots, X_n be IID with mean μ and variance σ^2 . Define $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$. Then:

$$Z_n \equiv \frac{\overline{X}_n - \mu}{\sqrt{V(\overline{X}_n)}} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} Z \sim N(0, 1).$$

3.3 Slutsky's Theorem

Theorem 6. Let X_n, Y_n be random sequences:

(a)
$$X_n \xrightarrow{P} X$$
, $Y_n \xrightarrow{P} Y \implies X_n + Y_n \xrightarrow{P} X + Y$.

(b)
$$X_n \xrightarrow{L^2} X$$
, $Y_n \xrightarrow{L^2} Y \implies X_n + Y_n \xrightarrow{L^2} X + Y$.

(c)
$$X_n \xrightarrow{d} X$$
, $Y_n \xrightarrow{d} c \implies X_n + Y_n \xrightarrow{d} X + c$.

(d)
$$X_n \xrightarrow{d} X$$
, $Y_n \xrightarrow{d} c \implies X_n Y_n \xrightarrow{d} c \cdot X$.

(e)
$$X_n \xrightarrow{P} X$$
, $Y_n \xrightarrow{P} Y \implies X_n Y_n \xrightarrow{P} XY$.

3.4 Continuous Mapping Theorem (CMT)

Theorem 7. Let g be a continuous function:

(1)
$$X_n \xrightarrow{P} X \implies g(X_n) \xrightarrow{P} g(X)$$
.

(2)
$$X_n \xrightarrow{d} X \implies g(X_n) \xrightarrow{d} g(X)$$
.

3.5 Multivariate Central Limit Theorem

Theorem 8. Let X_1, \ldots, X_n be IID random vectors:

$$X_{i} = \begin{pmatrix} X_{1i} \\ X_{2i} \\ \vdots \\ X_{ki} \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{k} \end{pmatrix}, \quad \Sigma = Var(X_{i}).$$

Define
$$\overline{X} = \begin{pmatrix} \overline{X}_1 \\ \overline{X}_2 \\ \vdots \\ \overline{X}_k \end{pmatrix}$$
. Then:

$$\sqrt{n}(\overline{X} - \mu) \xrightarrow{d} N(0, \Sigma).$$

3.6 Delta Method

Theorem 9. Suppose $\frac{\sqrt{n}(\overline{X}_n-\mu)}{\sigma} \xrightarrow{d} N(0,1)$ and g is differentiable. Then:

 $\frac{\sqrt{n}(g(\overline{X}_n) - g(\mu))}{\sigma} \xrightarrow{d} N\left(0, [g'(\mu)]^2\right).$

Proof:

By Taylor expansion:

$$g(\overline{X}_n) - g(\mu) = g'(\mu)(\overline{X}_n - \mu) + \frac{1}{2}g''(\xi)(\overline{X}_n - \mu)^2$$
$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} = \frac{\sqrt{n}(g(\overline{X}_n) - g(\mu))}{\sigma \cdot g'(\mu)} - \underbrace{\frac{\sqrt{n}g''(\xi)(\overline{X}_n - \mu)^2}{2\sigma g'(\mu)}}_{R_n}.$$

Analysis

- 1. Left-hand side: $\stackrel{d}{\rightarrow} N(0,1)$.
- 2. $|X_n \mu| = O_p(n^{-1/2}) \implies R_n = O_p(n^{-1/2}) \to 0$ (in probability).

4 Applications

Problem Prove that $\frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \xrightarrow{d} N(0, 1)$.

Proof:

expand the sample variance:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^n X_i^2 - n \overline{X}_n^2 \right]$$

$$= \frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}_n^2 \right].$$

____ Key Steps _____

1.
$$X_n^2 \xrightarrow{P} \mu^2$$
 (CMT).

2.
$$\frac{1}{n} \sum X_i^2 \xrightarrow{P} \mathbb{E}(X^2) = \sigma^2 + \mu^2 \text{ (WLLN)}.$$

$$3. \ \frac{n}{n-1} \xrightarrow{n \to \infty} 1.$$

4.
$$S_n^2 \xrightarrow{P} \sigma^2 \implies S_n \xrightarrow{d} \sigma$$
 (CMT).

Conclusion _____

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \cdot \frac{\sigma}{S_n} \xrightarrow{\mathrm{d}} N(0, 1) \cdot 1 \quad \text{(CLT \& Slutsky)}.$$