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1 Recall
e X, B X, lim P(|X, — X| >¢€) =0.
n—oo
e X, 5 X, lim F,(t) = Fx(t) , for all ¢ for which Fx is continuous.
n—oo

e X, 5 X, lim E[(X, — X)) =0.

n— oo

2 Some Proof about Types of Convergence

2.1 Classical Example

To prove:

e DX, X, P(X=0)

1.

Proof:

where /nX,, ~ N(0,1)

lim F,(t)=1, fort>0.

lim F,(t)=0, fort<D0.




Fort>0:

Fort <0:

Att=0:

1
lim F,(t) = =, whent=0.
n—o00 2
1 ift>0,
Fx(t) =
0 ift<0.

lim F,(t) = Fx(t) = 1,

n—o0

lim F,(t) = Fx(t) =0,

1
lim F,(0) = 5 # Fx(0) =1 (Point of discontinuity).
n— o0

X, % x.

Supplementary Theorem

Theorem 1 (Markov Inequality). If random variable X > 0, then for all € > 0,

o o o I3
N w w >
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Proof:

IP’(X>6)§%.

Estimating Tail Probability

——— Probability Distribution
Threshold
Tail

N

0 2 4 6 8 10

& 1: Markov Inequality Example Figure

Let y; = el(x > €) and yo = z(x > €).

Since

1 S Y2,



then
E(y1) < E(y2),
E[I(X > ¢)] < E(X),
P(X > ¢) < E(X),

E(X)

P(X >¢) <

Theorem 2 (Chebyshev’s Inequality). Given a sequence {X,,}, E(X,,) = u, Var(X,) = o2

2

= P(IX, —ul >0 < 5.
€
Proof:
P(X, — 1] > ) = P((X, — p)? > &)
)2
< El(Xy — p)’]
< &2
2
e
Tips.
(1) Concentration Inequality
(2)
Elexp(Xn — p)]

P(exp(Xn - M) 2 exp(e)) S exp(e)

Supplementary Theorem

« @ X, 5.

Proof:

P(IX, — 0] > ¢) = P((X, — 0)? > ¢?)
= ]P((Xn - ]E(Xn))2 > 62)

Xn
S% (by Theorem2)
€

1
= — —0.
ne2

2.2 Relationship between types of convergence

Theorem 3. (D



Summary:
point-mass distribution
gt T Yy
quadratic mean — =——— Probability me— Jistribution
K 2: Relationship between Types of Convergence.
Proof:
)
P(IX, — X[ >¢) =P((X, — X)* > ¢
_ 2 2
< E[(X, — X)?] -x,Bx 0.
< &
@
F.(z) =P(X, <)
=P(X, <z, X> a2+ +P(X, <z, X <x+¢€)
<PX,<2,X> z+e)+P(X <z+¢)
<P(X — X,| > ¢€) + Fx(z +e).
Fx(x—e)=P(X <z —¢)
=PX<zr—-€6X,<z)+PX <z-¢X,> 2)
<P(X, <z)+PX, > X +e¢)
< F,(z) +P(|X,, — X| > ¢).
Therefore,

Fx(z =€) = P(|Xn — X[ > €) < Fu(2) < Fx(z +€) + P(|X,, — X| > ¢).

Asn — oo, F,(z) — Fx(z) at x which is a continuous point of Fx.

&)



P(| X, —¢|>¢e) =P(X, >c+e)+P(X, <c—¢)
=F,(c—¢e)+1—F,(c+e).

As n — oo,

Fx(c—e)4+1—Fx(c+e)
=0+1-1
=0

3 Main Theorems

3.1 Weak Law of Large Numbers (WLLN)
Theorem 4. If Xi,..., X, are IID with EX; = p, then X, L L.

Proof:
By Chebyshev’s inequality:

V(X,) o2
62 = @ —0 (n — OO)

P(| X, —pl>€) <

3.2 Central Limit Theorem (CLT)

Theorem 5. Let X4,...,X, be IID with mean u and variance 0. Define X, =n~" Z?:l X;.
Then:

Z, = = 4 Z ~ N(0,1).

3.3 Slutsky’s Theorem

Theorem 6. Let X,,,Y, be random sequences:

(a) X, 5 X, Y, Y = X, +V, D X+VY.
0) X 5 x, v, 5y = X, 1Y, 5 x4+,
() Xo X, Y, Se = Xo4Y, S X +ec.

(d) Xo X, Y, S e = XY, S X,

(e) Xop X, Y, Y = X,Y, 5 XY,



3.4 Continuous Mapping Theorem (CMT)

Theorem 7. Let g be a continuous function:

(1) X, 5 X = g(X,) 5 g(X).

2) X, S X = g(X,) S g(X).

3.5 Multivariate Central Limit Theorem

Theorem 8. Let Xq,...,X,, be IID random vectors:

X1 M1
Xo; H2
Xi=\| |, w=| .1, X=Var(Xy).

Xhi Fek
X,
— | X

Define X = |  |. Then:

X5

V(X —p) 5 N, 3).

3.6 Delta Method

Theorem 9. Suppose @ LN N(0,1) and g is differentiable.
Then: _
\/ﬁ(g(Xn) - g(:u)) i N (0 [gl(lu)]Z) )

g

Proof:

By Taylor expansion:

o) — 91) = ¢ (W)X — 1) + 2" (O)For — p)?

2
V(X — ) _ V(g(Xa) —g(w) — vng"(E)(Xn — p)?
o o-g'(n) 209’ (1) '
Ry,
Analysis

1. Left-hand side: % N(0,1).

2. | X, —pu|=0,(n"?) = R, = 0,(n"Y%) = 0 (in probability).



4 Applications

Problem Prove that @ 4 N(0,1).

Proof:

expand the sample variance:

52: X,L— n2
=1
_ 1 nX2 y2
T on-—1 Z i~
i=1
__n llzn:XQXQ]
n—1 n =
Key Steps

1. X2 5 42 (CMT).

2. Ly x2 5 B(X?) = 02 + 42 (WLLN).

n n— oo
3. o 2%

4. 92552 —= 5,45 (CMT).

Conclusion

4 N(0,1)-1 (CLT & Slutsky).
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